
Simulation-based Signal Selection
for State Restoration in Silicon Debug

Debapriya Chatterjee, Calvin McCarter and Valeria Bertacco
Department of Computer Science and Engineering, University of Michigan

Email: {dchatt, cblue, valeria}@umich.edu

Abstract—Post-silicon validation has become a crucial part of modern
integrated circuit design to capture and eliminate functional bugs that
escape pre-silicon verification. The most critical roadblock in post-silicon
validation is the limited observability of internal signals of a design,
since this aspect hinders the ability to diagnose detected bugs. A solution
to address this issue leverage trace buffers: these are register buffers
embedded into the design with the goal of recording the value of a
small number of state elements, over a time interval, triggered by a
user-specified event. Due to the trace buffer’s area overhead, only a
very small fraction of signals can be traced. Thus, the selection of which
signals to trace is of paramount importance in post-silicon debugging and
diagnosis. Ideally, we would like to select signals enabling the maximum
amount of reconstruction of internal signal values. Several signal selection
algorithms for post-silicon debug have been proposed in the literature:
they rely on a probability-based state-restoration capacity metric coupled
with a greedy algorithm. In this work we propose a more accurate
restoration capacity metric, based on simulation information, and present
a novel algorithm that overcomes some key shortcomings of previous
solutions. We show that our technique provides up to 34% better state
restoration compared to all previous techniques while showing a much
better trend with increasing trace buffer size.

I. INTRODUCTION

Shrinking transistor sizes with each new generation of digital inte-
grated circuits (IC) have allowed modern IC designs to include more
and more logic, thus becoming increasingly complex. Concurrently,

the time-to-market for new IC products has been shrinking rapidly.
This phenomenon has put enormous burden on the verification
flow of digital designs. Traditionally, functional bugs in a design

have been identified through the extensive use of simulation and
formal verification techniques in the pre-silicon phase. However,

with shorter design cycles, and considering the limited speed of
simulation and limited capacity of formal tools, these methodologies
are often insufficient to detect functional bugs that manifest deep

in the design’s state space or are very infrequent. As a result, the
first silicon prototypes often still contain design bugs, even if they

clear manufacturing testing. To facilitate detection and investigation
of these bugs, post-silicon debug has emerged in recent years as a
crucial technique.

The fundamental challenge in silicon debug lies in the very limited
visibility of internal design signals. The capabilities of physical

probing tools [1] are very limited, and it is infeasible to observe
each and every signal in fabricated silicon. So far, reusing design for

test (DFT) circuit structures, such as internal scan chains, for silicon

debug has been widely adopted in the industry [2]. Though scan
chains can capture all or a subset of internal state elements, and thus

increase signal observability for silicon debug, it may take several
thousand clock cycles to dump out one observed state snapshot and,
in most cases, the circuit’s execution must be suspended until the

completion of this process. The inclusion of shadow flip-flops in
the scan chain can maintain normal circuit operation during the

scan transfer, but it requires higher area overhead, and can still
only produce one snapshot every few thousands cycles, which is too
infrequent for being useful in most debugging efforts.

To facilitate silicon debug, design for debug (DFD) structures such
as embedded logic analyzers (ELAs), have been proposed [3] and

have found widespread use in the industry [4], [5], [6]. An ELA
consists of a mix of trigger units and sampling units. Programmable

trigger units are used to specify an event for triggering the logging of
internal signal values. Sampling units are used to log the values of a

small set of signals (trace signals) over a specified number of clock
cycles into trace buffers. The number of signals traced is known as

the width of the trace buffer, while the length of the tracing interval is
called depth. Trace buffers are implemented with on-chip embedded
memories [5] and data acquisition can be performed during normal

chip operation by setting up the relevant trigger event. Subsequently,
the sampled data is transferred off-chip via low bandwidth interfaces

for post-processing analysis for debug. Note that DFD structures must
maintain a low area overhead profile, since they do not provide added
benefits to the design. As a result, only a very small number of signals

can be traced in comparison to those available in the design.
For ELAs to be effective, designers must carefully select for

tracing those signals that yield the most debug information. Through

a judicious choice of trace signals, one can even reconstruct data for
state elements that are not traced. As an example, for micro-processor

designs, it is common practice to trace pipeline control signals so that
the values of other data registers can be inferred during post-analysis.
This approach cannot be used for a general circuit, however, because

it leverages architectural knowledge of the design. Indeed, the need
for generalized solutions in this domain is growing.

Even though the additional inferred information does not guarantee
the identification of design errors, it still increases internal signal
visibility and has the potential of providing valuable debugging

information. Because bugs tend to occur in unexpected regions and
configurations, it is not always possible to predict the most important
signals to trace. Ideally we would like a mechanism which allows

to reconstruct almost all internal signals from the tracing of just a
handful of signals, so as to offer pre-silicon quality observability

during post-silicon debug.
Recent research addressing these challenges [7] has shown that

many un-traced signals and state elements can be inferred from a

small number of traced state elements by forward and backward
implication, even in arbitrary logic. Ko and Nicolici [7] were first
to propose an automated trace signal selection method that attempts

to maximize the number of non-traced states restored from a given
number of traced state elements. The quality of the trace signal

selection was quantified by the state restoration ratio (SRR), that is,
the ratio of the number of state values restored over the state values
traced, over a given time interval. This measure has been adopted

by subsequent research to compare the quality of other solutions.
Further research [8], [9], [10] has proposed several automated trace

signal selection methods based on different heuristics for estimating
the state restoration capabilities of a group of signals. These research
solutions share a common structure: (i) a metric to estimate the state

restoration capability of a set of state elements and (ii) the use of
the metric in a greedy selection process to evaluate candidate set of
signals and converge to a final selection.

In this work we show that a more accurate metric for state
restoration capability of a set of signals can be obtained by actually

simulating the restoration process on the circuit over a small number
of cycles, and measuring the corresponding restoration ratio. We
also propose a novel signal selection method guided by this metric.

Our solution overcomes a key shortcoming of previous greedy
approaches to a large degree, namely that of diminishing returns:

when the number of traced signals is increased, additional restored
state elements increases sub-linearly.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 595

A. Contributions

The main contributions of this work can be summarized as follows:

• We show that computing the SRR by simulation of the design
over a small number of cycles (compared to the typical depth

of the trace buffer in use) provides an accurate estimate of the
SRR obtained from actual trace buffer data over a longer period.

• We propose a novel trace signal selection method based on
iterative elimination of state elements. We show experimentally
that our solution provides better trends when the number of

traced signals is increased.
• Experiments show that our solution provides up to 34% better

state restoration ratio compared to all previous solutions.

II. RELATED WORK

Automatic trace signal selection algorithms for post-silicon debug

are a fairly new research area. One of the first solutions in this domain
[11] considered only the reconstruction of data at the combinational
logic nodes of the circuit. Ko and Nicolici [7] defined the term state

restoration and introduced an efficient algorithm to perform state
restoration as a post-analysis process on recorded trace-buffer data.

They also introduced the first trace signal selection algorithm striving
to maximize the amount of restored state. Further research in this
area has produced several improved solutions for automatic signal

selection [8], [9], [10], all sharing the goal of improving the SRR.

As mentioned earlier, these solutions share a common structure,

with a metric to estimate the restoration capacity of a certain set
of state elements and a greedy selection algorithm to decide which
ones to trace, based on the estimator metric. These previous solutions

primarily differ in the way estimation is performed. Both [7] and
[8] leverage a probabilistic metric: the steady state probability of

the value at flip-flop outputs is estimated assuming uniform random
distribution of 0 and 1 logic values at the primary inputs. Given these
assumptions and using the knowledge of the traced signal values, a

probabilistic model of the visibility of 0 and 1 values at the other
circuit nodes can be generated. This probabilistic model leverages

the circuit topology and logic functionality of individual gates, and
the estimation process performs forward and backward propagation
of probability values across logic gates. The final state restoration

capacity estimate is then expressed as a sum of the predicted visibility
of 0 and 1 values at the state elements of the circuit. The probabilistic
model presented in [7] lacks theoretical basis and it is then improved

on in [8]. In contrast, [10] considers only the restoration probability
along paths connecting flip-flops. The probability that a flip-flop

output value controls the input value of another flip-flop is computed
and called direct restorability of the corresponding path. The selection
algorithm grows a region of flip-flops in a greedy fashion based

on this metric, while an adjustment mechanism accounts for flip-
flops that are already selected in the region and updates the path’s

probabilities accordingly. Another solution presented in [9] estimates
the visibility of non-traced nodes by non-trivial logic implications of
flip-flop values. However, [9] assumes that in addition to trace signals,

all primary input values for every cycle are known to the restoration
algorithm. Our proposed solution is fundamentally different from
these previous ones as it relies on simulation for estimation instead

of a probabilistic metric.

Another line of research [12], [13] suggests that not all state

elements or signals are equally relevant for debugging purposes.
Hence, instead of striving to maximize the state restoration ratio,

the authors of those works focus on maximizing restorability of a
specified subset of signals, while minimizing the impact to other
flip-flops. In particular, the algorithm in [13] uses a probabilistic

estimation metric analogous to [8], and follows a pareto optimal
selection process. We show that our solution can be adapted to

solve this problem variant as well, by simply assigning larger weight
coefficients to the set of critical flip-flops.

III. BACKGROUND AND MOTIVATION

An ideal post-silicon debugging solution would enable a pre-silicon

quality observability, i.e., every signal value is observable at each
cycle, with little design effort and area overhead. A more realistic
goal is to attain partial observability by tracing a small set of signals

and use them to find the root cause of the bug. Several previous
solutions have suggested automatic signal selection algorithms to

determine which state elements allow maximum restoration if traced.
An intuitive measure for evaluating restoration quality is the state

restoration ratio, defined as SRR = Ntraced+Nrestored

Ntraced

, where

Ntraced is the number of traced state elements and Nrestored is the
number of restored ones during the time window dictated by the trace
buffer’s depth. Automated signal selection strives to maximize SRR.

 0 1 2 3 4
FF0 1 1 X X X
FF1 0 0 X X X
FF2 0 1 1 0 X

FF3 X 1 0 0 1
FF4 X 1 1 1 X

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FF0

FF1

FF2

FF3

FF4

circuit under debug

state restoration

0
X

0

1
1

1

0
1

0

1
X

1

0
0

0

1
0

1

forward

backward

combined

Fig. 1. Example of state restoration process. The circuit shown at the top
left is the circuit under debug, with flip-flop FF2 traced for 4 clock cycles
(shown in grey). The table below lists the values of all flip-flops, whether
traced, restored or unknown(X). Forward inference and backward justification
through the logic gates (shown with forward and backward arrows in the table)
allows to restore several flip-flop values that were not traced. The elementary
rules of forward inference, backward justification and combined inference are
shown for two types of logic gates on the right side of the figure.

A. State Restoration Process

The state restoration process relies on the property that if a control-

ling value is known for at least one input of a logic gate, the output
can be inferred without the knowledge of other inputs. This property

is used for forward inference of signal values in case of partial
knowledge. Similarly, if a non-controlled value is observed at the
output of a gate, all inputs can be inferred to hold the non-controlling

value for that type of gate, enabling backward justification. Combined
inferences leveraging knowledge of both inputs and output are also
possible (see Figure 1. Repeated application of these simple opera-

tions for all gates of a circuit till no new value can be generated, leads
to value reconstruction for state elements beside those traced. This

process is used in the post-analysis of the data obtained from trace-
buffers to restore non-traced signals. Figure 1 illustrates this process
with an example inspired by [7]. In this example, the flip-flop FF2 is

traced over four clock cycles; additional values at other flip-flops can
be inferred as shown in the table in the lower part of the figure. In this

particular example, the state restoration ratio, SRR = 15/4 = 3.75
(Ntraced = 4, Nrestored = 11). An efficient bit-parallel algorithm
to perform this restoration process is introduced in [7], and it is

extensively used in our implementation. It is important to note that the
forward inference and backward justification operations are correct
only if the logic functions of the gates in the circuit conform to the

structural netlist, with no stuck-at-faults or other such faults (this
is assured since the IC has cleared manufacturing tests). Timing

errors must also be avoided for correct restoration, a goal that can be
attained by reducing the clock frequency during debug operations.
Hence, this technique is only effective for investigating functional

bugs. The key challenge of this process is how to select which
state elements to trace among the thousands of a typical design to

achieve the best possible restoration of internal signals and other state
elements.

596

B. Structure of Signal Selection Algorithms

Most signal selection algorithms presented in the literature so far
[14], [8], [9], [10] share a common structure. First, a metric is devised

to estimate the state restoration capacity of a given set of signals;
second, a greedy selection process guided by the metric is used to
converge to a locally-optimal selection. Figure 2 summarizes this

general structure.

Input: circuit, width of trace buffer w,
restoration capacity metric fC(...)
Output: selected flip-flop set T

while (|T | < w) {
maximum visibility maxV = 0
for (each unselected flip-flop s in circuit){

T = T ∪ {s}
visibility V = fC(T)
T = T \ {s}
if(V > maxV){

selected = s
maxV = V }

}
T = T ∪ {selected}

}

Fig. 2. General structure of greedy selection algorithms.

For the algorithm to be successful, the capacity metric should have
the following properties: (i) it should be proportional to the actual

average SRR that can be obtained with the given set of signals
over many runs, (ii) it should be as computationally inexpensive

as possible, since several such computations will be needed in the
final selection process. The first criterion is especially important for
the greedy selection process to be successful, since it guides the

successive greedy choices towards the optimal subset. The greedy se-
lection process starts off with the signal which promises the maximum
capacity, and then enlarges the set, one signal at a time, by evaluating

the restoration capacity of all possible candidate sets including one
more signal. In Section IV-A, a better capacity metric obtained by

simulated restoration is explored, while a critical shortcoming of the
greedy selection process itself is detailed in the next section.

C. The Problem of Diminishing Returns with Greedy Selection

18.6 18.6
9.8

55.0

3.0 3.0
0

20

40

60

80

100

120

0

100

200

300

400

500

600

8 16 32 8 16 32

N
u

m
b

e
r

o
f
re

s
to

re
d

 f
lip

�f
lo

p
s

Trace buffer width

average restored FFs per cycle
average gain of restored FFs per extra traced FF

Liu & Xu Basu & Mishra

N
um

be
r

of
 F

F
s

ga
in

ed
pe

r
ex

tr
a

tr
ac

ed

Fig. 3. Diminishing returns in restored flip-flops when increasing trace
buffer size is observed for two previous solutions. The plots correspond to
circuit s38417.

The greedy selection process suffer from another critical problem
with regards to the quality of the chosen signals. Figure 3 plots the
average number of restored flip-flops per cycle for 3 different trace

buffer widths (8, 16 and 32) for the ISCAS89 benchmark circuit
s38417. Alongside, we also plot the average number of restored

flip-flops attained when adding each new traced flip-flop (FF). The
plots correspond to the data reported by Liu & Xu [8] and by
Basu & Mishra [10]. Note that in the result obtained by Liu & Xu,

an increase of the observed FFs from 8 to 16 corresponds to an
increase in the number of restored FFs from 149 to 298, leading

to a (298 − 149)/(16 − 8) = 18.62 gain per added new trace
signal, as shown by the inner dark bar corresponding to width 16.

However, when the traced signals increase from 16 to 32, the rate
of gain is much lower (9.8). This effect is even more pronounced
in the results by Basu & Mishra [10], where a much better initial

restoration is obtained, but as the number of trace signals are
doubled, the improvement is minute. This behavior results from the

inaccuracy of the estimation metric, as well as the very nature of the
greedy selection. Indeed, the restoration obtained by greedy selection
algorithm plateaus when a large number of flip-flops are traced. This

is because the selection of 2n flip-flops is constrained by the previous
selection of the first n flip-flops. In contrast, the best possible set

of 2n flip-flops might not even include some of the first n flip-
flops. Hence, we propose an alternative approach that applies greedy
selections backward: i.e., we start off with the set of all FFs, and

then we iteratively reduce this set until we obtain a set of the desired
cardinality. In the following section we outline an algorithm based
on this approach.

IV. SIGNAL SELECTION ALGORITHM

We first derive a more accurate restoration capacity metric, and
then we use this metric in our proposed algorithm.

A. Improving the Restoration Capacity Metric

A good restoration capacity metric should have a high degree of
correlation with the actual SRR in the post-silicon post-analysis, since

the more accurate the metric, the more likely it is to obtain an optimal
subset of signals in the selection process. To evaluate the quality of
a restoration capacity metric, we devise the following experiment:

we choose 1,000 random sets of 8 flip-flops each and measure the
average SRR in each set, using a trace buffer depth of 4,096, obtained

with 100 simulation runs on the same design (we used 10 sets of
random seeds and 10 different starting points for tracing per seed). We
also asserted the appropriate control signals to ensure that the circuit

would operate in its normal functional mode during the simulation.
Figure 4 plots the average SRR vs. the estimated one obtained with

the Liu & Xu’s restoration capacity estimation metric. Data is shown
using a scatter plot to highlight the correlation of the metric with the
actual measured SRR.

y = 1.1884x 	 8.221
R² = 0.1807

0

2

4

6

8

10

12

14

16

18

8 9 10 11 12 13 14 15 16 17

Computed visibility

M
e

a
s
u

re
d

S
R

R

Fig. 4. Correlation of the Liu & Xu restoration capacity metric with
measured SRR for s35932. The metric has a positive but poor correlation
with measured SRR. We also report a linear regression fit of the data and
the square of the correlation coefficient. Data points in the lower right corner
represents selection of flip-flops that have a high estimated value of state
visibility but rather poor measured SRR. This can drive the greedy selection
algorithm to sub-optimal selections.

As can be noted from the figure, although the metric has positive

correlation with measured SRR, the extent of correlation is poor, as
indicated by the small correlation coefficient (R). The fundamental
reason behind this pattern lies in the lossy information compaction

of probability-based restorability estimates. For example, consider the
two input AND gate of Figure 5, where the only knowledge available

is that the restoration probability of value 1 (V1) at the inputs is
0.5. A probability-based estimation scheme will infer the restoration

597

probability of value 1 at the output to be 0.5×0.5 = 0.25. However,
if the actual restored values for the two inputs over 6 successive clock
cycles are 1X1X1X and X1X1X1, compatible with the estimated

restoration probability, we can not restore the output for any cycle.
This type of flaw is common to all probability based estimates and it

results from the compaction of information over several cycles into a
single measure. It could be avoided if we had a conditional probability
distribution of each signal’s restorability given the value of other

signals, an infeasible level of accuracy in practice. In conclusion, the
example shows that restoration probability estimates are not reliable,

and often do not correlate well with actual restoration.

restored X1X1X1

a

b c

V1(a)=0.5

V1(b)=0.5
V1(c)=0.25

restored 1X1X1X

restored

XXXXXX

Fig. 5. Example of a misleading Restoration Probability Estimate.

Keeping the ideal characteristics of a restoration capacity metric
in mind, we investigated whether a new metric could be constructed

from the simulation of restoration itself. Indeed, a better estimate of
SRR for a given group of signals and trace depth can be obtained
by performing a large number of simulations while randomizing

input values and the starting point for tracing; then performing
the restoration process for the circuit; and finally averaging the
SRR values from each individual simulation. This corresponds to

estimating the SRR for the group of trace signals by Monte Carlo
simulation, and unfortunately it is a very compute intensive process

for typical trace buffer sizes and depths. In contrast, as we indicated
earlier, individual restoration capacity estimations should be kept
fairly simple, due to the large number of estimations required for

a selection to converge to a final set.
A key insight in our search for an accurate SRR estimator is that

the estimate of state restoration capacity metric does not need to
match exactly the SRR, but only be highly correlated with it, so that

it guides us to the same group of traced signals. A common method of
reducing effort in simulation-based estimations is to perform several

short simulations and average their outcomes. Specifically, we could
use a shorter trace buffer depth. This observation led us to a study
of SRR sensitivity to trace buffer depth. The results for one selection

of 8 flip-flops for circuit s35932 circuit are shown in Figure 6. In
the figure, we plot the SRR estimate computed over several trace

buffer depths, three different random starting points of tracing and
three different random input value selections per starting point. The
main conclusion that can be derived from the study is that the SRR

obtained from a certain group of traced signals is fairly insensitive
to the trace buffer depth: indeed it can be noticed from the figure
that the SRR variation is negligible beyond a trace buffer size of 64.

We observed a similar behavior for all other ISCAS circuits, as well
as when using a larger set of random samples. Intuitive reasoning

suggests SRR is relatively insensitive to trace buffer depth beyond
a certain size, since most circuits tend to stay in a small fraction
of possible states, and each occurrence of such states has similar

restoration behavior. We conclude then that SRR measurements over

8

10

12

14

012

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

32 64 128 256 512 1024 2048 4096

S
ta

te

R
e

s
to

ra
ti
o

n

R
a

ti
o

seed(x100)

offset(x6000)

buffer depth

Fig. 6. Impact of trace buffer size on SRR. Analysis on s35932 over
3 random starting points of tracing and 3 random sets of input values per
starting point indicates that SRR for a fixed set of signals is fairly insensitive
to trace buffer sizes beyond 64.

simulated restorations on small trace buffer sizes (∼64) provide an
accurate estimation of restoration capacity.

y = 1.028x - 0.2983

R² = 0.9774

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

y = 0.9246x + 0.1263

R² = 0.9782

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

State restoration ratio computed from mock simulation

M
e
a
s
u
re

d
 S

R
R

s38417 s35932

Fig. 7. Correlation of our simulation-based restoration capacity metric
with observed SRR using a mock simulation trace depth of 64 for s38417
and s35932. The proposed metric bears strong positive correlation with the
observed SRR as indicated by the high value of the correlation coefficient.

To further validate our hypothesis that short trace buffer sizes are

sufficient for accurate SRR estimation we performed the previous
correlation study using our new estimation metric, as shown in Figure
7. The SRR estimate is computed using a fast mock simulation

with a trace buffer size of 64 and only one random set of inputs
and starting time for tracing. This is the setup for estimations
that we used in the rest of the paper. We conclude that the SRR

measurements over simulated restorations on small trace buffer sizes
(∼64) provide a reliable estimate of restoration capacity. The plots of

Figure 7, obtained for s38417 and s35932, clearly indicate a very high
correlation between our estimation metric and the observed SRR. The
simulation based capacity estimation evidently shows an extremely

high degree of linear correlation with the observed SRR. Similarly
strong correlations were observed for other ISCAS circuits as well.
These results confirm the viability of an SRR estimator based on

mock simulation of restoration over a small trace buffer size.. We
expect that greater buffer sizes and averaging over more simulation

with different random input values and starting points would further
improve the accuracy of the estimate, although with smaller returns.

B. Algorithm Design

Fig. 8. The signal selection process. Each row corresponds to one round of
the algorithm; the flip-flop (FF) whose elimination leads to maximum retention
of restored states according to the estimation metric is removed in next round.
The black squares correspond to FFs previously eliminated, while crosses
indicate the FF being evaluated for elimination. In this example there are a
total of 5 FFs and a trace buffer width of 2, so 3 FFs must be eliminated.

The problem of selecting an optimal set of flip-flops can be thought
of as the problem of retaining the maximum amount of information
in the unrolled circuit graph. In our algorithm we start off including

all flip-flops in the circuit, which will restore almost all signals and
states, and then we try to reduce this set by removing flip-flops

incrementally. This process will ensure that early selections do not
limit the quality of the final pool, as discussed in Section III-C.
The Flip-flops that contribute least to restoration of others should

be eliminated first. The process terminates when we are left with
a set of flip-flops of the desired cardinality. During each step of

the algorithm, we use the proposed simulation-based estimator to
evaluate the restoration capacity of the candidate set of flip-flops. If

598

elimination of two or more candidate flip-flops results in the same
restoration estimate, we break the tie by comparing the total number
of signals restored. If a tie still exists, then we consider the number

of connected flip-flops via a forward or backward path in the circuit
graph: flip-flops with fewer connections will get eliminated, if a tie

still remains it will be broken by random choice.

Our algorithm is illustrated in Figure 8: the schematic represents
each elimination step of the algorithm when operating on a circuit

with 5 flip-flops and a target trace buffer width of 2 state elements.
Note that if the initial candidate pool includes N flip-flops, O(N2)
steps are required to converge to the final set. Hence, for large circuits
this might be too computationally demanding. To this end, we noticed
that it is common that some flip-flops are always restorable from

others; hence they do not carry any additional information. We take
advantage of this fact by using a fast pruning phase on a large number

of flip-flops at the beginning of the algorithm, so as to reduce this
size of the initial set to make the application of an O(N2) algorithm
feasible. For the pruning phase, we consider the SRR estimate of

each candidate set obtained by removal of one flip-flop, and then we
remove multiple flip-flops in one single step, all characterized by a
small contribution to restoration capacity. As shown in the pseudo-

code of Figure 9, we consider all possible eliminations in sorted order
of SRR estimate values (stored in RCW [] vector). The flip-flops

whose elimination lead to the top SRR estimate values are selected
to be in the elimination set. The size of the set is a parameter called
step-size d, set to 50 in our experiments. To limit the extent to which

this coarse grain pruning is applied, we specify a pruning termination
parameter PT such that, if the average number of restored flip-flops

in the mock simulation drops below PT , the coarse grain pruning
phase ends. This parameter establishes a trade-off between quality of
selection and computational cost of the algorithm. In our experiments

we set PT = 95%.

Input: circuit, width of trace buffer w,
mock simulation based SRR estimator fSRR(...)
Output: selected flip-flop set T
Parameter: step-size d, pruning termination parameter PT

while (V > PT) {
for(each flip-flop s in T){

T = T \ {s}
visibility V = fSRR(T) × |T |
restoration capacity without s RCW [s] = V
T = T ∪ {s} }

T = T−{s | RCW [s] is within top d values }
V = fSRR(T) × |T | } //end of pruning

while (|T | > w) {
maximum visibility maxV = 0
for each s ∈ T{

T = T \ {s}
visibility V = fSRR(T) × |T |
T = T ∪ {s}
if(V > maxV){

selected = s
maxV = V } }

T = T \ {selected} }

Fig. 9. Pseudo-code for our proposed algorithm.

Adapting to Biased Selection: An important variation of the
problem of state restoration was addressed in [13]. A set of critical

flip-flops (SC) are identified among the entire set of flip-flops (Sall)
based on a user-defined criteria. For example in [13], the objective is
to estimate power droop in the circuit, hence the netlist is partitioned

into a coarse placement grid, and one flip-flop is selected from each
grid block as a critical flip-flop. The trace selection algorithm biases

the selection process so to restore the maximum number of critical
flip-flops, while sacrificing restoration for non-critical flip-flops the
least. Our proposed method can be adapted to tackle this problem

variation by assigning appropriate weights to the critical flip-flops.
We define the critical visibility VC as the average number of critical

flip-flops restored by mock simulation, the non-critical visibility VNC

is defined similarly. We combine these to form the total weighted

visibility as Vw = VNC + (|Sall| − |SC | + 1) × VC . Here Vw

replaces the usual visibility in the algorithm of Figure 9. The choice
of weight ensures that restoration of a single critical flip-flop is a

more rewarding choice than restoring all non-critical ones. However,
since in each step of elimination the set providing maximum weighted

visibility is retained, the algorithm will reach the optimal solution
w.r.t. to our estimation metric. Results obtained with this biased
selection process are discussed in Section V-D.

V. EXPERIMENTAL RESULTS

We evaluated the quality of our proposed algorithm by comparing

the SRR obtained on six ISCAS89 benchmark circuits, against
that obtained by previous works [14], [8], [9], [10]. In addition,

we present results for three control path blocks taken from the
OpenSparc processor core design[15], synthesized from their RTL
description. Important circuit characteristics are presented in Table I.

The benchmarks are re-synthesized using Synopsys Design Compiler
targeting the GTECH gate library to conform with the quality of
optimization performed on industrial netlists. Note that, the synthesis

tool automatically removes some redundant flip-flops in the designs
under evaluation.

Circuit
Flip-flops # Flip-flops # Gates

before synthesis after synthesis after synthesis

s5378 179 164 1,058
s9234 211 145 920
s15850 534 524 3,619
s38584 1,426 1,426 12,560
s38417 1,636 1,564 10,564
s35932 1,728 1,728 4,981
Sparc MMU - 262 1,977
Sparc EXU - 327 2,168
Sparc IFU - 2,755 19,912

TABLE I
Benchmark circuits used to evaluate our signal selection algorithm

We used an X-simulator that we developed in house to compute
the simulation-based estimation metric and to measure the final SRR

obtained by applying our proposed algorithm. The X-simulator takes
a design along with traced values, and it restores all possible values of

non-traced signals and states. We implemented our X-simulator using
the efficient event-driven bit-parallel propagation technique described
in [14]. All the experiments were run on a quad core Intel processor

running at 2.4 GHz. The width of the bit-parallel operations in the
restoration process was extended to 64 bits from 32 bits described in
[14], to better utilize the 64 bit word size capabilities of the processor.

This led to much better performance in the estimation phases, since
the trace buffer depth was also 64 cycles.

We forced each design to operate in its normal functional mode
during tracing by forcing fixed values at the relevant control inputs,

including reset, while assigning random values to all other inputs.
This setup is referred as “deterministic random” in several previous

works [14], [10].

A. Restoration Quality

Table II compares the state restoration ratio obtained by several
previous solutions against our proposed technique. As in [8], [10],
the trace buffer widths used in the experiments are 8, 16 and 32,

while its depth is kept at 4,096 cycles. The corresponding SRR
for each solution (wherever known) is reported. The percentage
improvement of SRR obtained by our proposed algorithm over the

best reported value is indicated in last column. Each restoration ratio
is averaged over 100 simulations, using 10 different random seeds

(to generate random values at non-control primary inputs), and 10
different starting points past from the initial reset state, per seed. For
certain buffer sizes, especially in smaller circuits, the SRR obtained

by our solution is not better than some of the previous solutions.
This is primarily due to the fact that our optimized ISCAS89 circuits

have fewer flip-flops. Hence, even though our technique actually
restores a higher fraction of the flip-flops, the reported SRR of

599

Circuit
trace Ko & Liu & Basu & Proposed Improv.(%)
width Nicolici [14] Xu [8] Mishra [10] Solution over best

s5378
8 - 14.67 - 13.24 -9.75
16 - 8.99 - 7.83 -12.93
32 - 4.72 - 4.89 +3.60

s9234
8 - 4.76 - 10.68 +24.36
16 - 7.18 - 7.16 -0.27
32 - 4.67 - 4.18 -10.49

s15850
8 - 19.93 - 39.54 +98.39
16 - 24.22 - 24.85 +2.60
32 - 13.30 - 13.60 +2.25

s38584
8 19.00 19.23 78.00 84.10 +7.82
16 10.56 13.96 40.00 47.04 +17.60
32 6.32 8.68 20.00 26.97 +34.85

s38417
8 19.62 18.63 55.00 45.21 -17.80
16 11.22 18.62 29.00 30.77 +6.10
32 6.73 14.20 16.00 20.25 +26.56

s35932
8 41.45 64.00 95.00 96.12 +1.17
16 39.31 38.13 60.00 67.45 +12.41
32 24.76 21.06 35.00 43.23 +23.51

TABLE II
Compariosn of state restoration ratio with no input knowledge. The table
compares our solution against previous ones, computing restoration only based
on traced state elements. The last column reports change over the best reported
in literature.

previous solutions has the advantage of including the restoration of
redundant flip-flops. For example, for s9234 at a buffer size of 32,

our algorithm restores 4.18x32 = 134 (approx.) flip-flops on average,
per cycle, out of total 145, which is 92% of all flip-flops, whereas

the best reported solution only restores 4.67x32=149(approx.) out of
211 flip-flops, corresponding to 70%. For larger circuits, which better
represent practical post-silicon debug situations, our solution achieves

an improvement of up to 34.85% (for s38584) in the SRR.

Circuit
trace width

8 16 32

Sparc MMU 12.22 8.03 4.67
Sparc EXU 4.53 3.46 4.02
Sparc IFU 99.10 62.01 35.67

TABLE III
SRR for OpenSparc blocks, using only traced state elements.

We report the SRR obtained for the OpenSparc blocks in Table
III. The primary inputs were driven by the trace recorded during the
execution of a functional test from the OpenSparc regression suite.

The trace buffer depth is kept at 4,096 cycles for these designs as
well.

Circuit
trace Prabhakar Basu & Proposed Improv.(%)
width & Hsiao [9] Mishra [10] Solution over best

s5378
8 19.30 19.00 20.25 +6.58
16 9.70 9.90 10.21 +3.13
32 4.84 5.00 5.12 +2.40

s9234
8 20.30 23.30 14.34 -38.45
16 10.30 11.80 7.80 -33.89
32 5.20 6.00 4.21 -29.83

s15850
8 55.60 55.10 55.89 +1.43
16 27.80 29.80 31.01 +4.06
32 13.90 15.80 16.36 +3.54

s38584
8 130.10 151.20 176.84 +16.95
16 66.02 78.40 88.47 +12.84
32 34.80 40.50 44.32 +9.43

s35932
8 209.60 209.40 215.94 +3.12
16 104.80 105.80 107.97 +2.05
32 52.40 53.30 53.98 +1.27

TABLE IV
SRR leveraging input knowledge. Comparison of SRR computed using both
state tracing and input knowledge. The last column represents percentage
change over the best reported in literature.

We also compare the restoration quality of our approach to [9],

when all the primary input values are known at every clock cycle
during the traced interval. Though this assumption is not as realistic,
since in a real IC design the circuit blocks under study will probably

be embedded within a larger design, still, for sake of completeness,
we compare the performance of our algorithm versus [9] and [10].

Note that in this case almost 100% flip-flops are restored by previous
algorithms, so the scope of improvement is very limited. The results

are presented in Table IV, the reported SRR for the proposed
algorithm is averaged over 100 simulations as before. We observe
better restoration ratio than both previous solutions for all circuits,

except s9234. This anomaly is due to a smaller number of flip-flops
in our circuits due to synthesis optimization. Indeed our solution

restores an even higher fraction of the state elements than [9].

B. Effect of Pruning

We studied the effect of the pruning optimization (discussed in
Section IV-B) in our elimination-based algorithm. The effect of
pruning is shown in Figure 10. This data corresponds to execution

of the proposed algorithm for circuit s15850, when the fSRR()
metric is based on a simulation with a trace buffer depth of 32

(instead of the usual 64, for purposes of visible fine granularity),
and a trace buffer width also of 32. Hence, the algorithm terminates
when the traced set reaches 32. A total of 524x32=16,768 flip-flop

values (s15850 has 524 flip-flops, refer Table I) are present in the
simulation window for the estimator metric. The y-axis plots the value
of fSRR(T)× |T | × 32 during each iteration in the execution of our

signal selection algorithm. Note that the no-pruning line is smooth as
only one flip-flop is removed per iteration, and the total number of

restored flip-flops in the mock simulation gradually decreases. On the
other hand, pruning uses a step-size(d) of 50 flip-flops; hence, during
the pruning phase, the total number of restored flip-flops drops as a

step function. In this example pruning termination (PT) was set at
93% i.e. 16,768x0.93=15,594, a value by which the set is reduced

to a size of approximately 200. Note that the quality of pruning
is only slightly worse than the exact version (the with-pruning line
ends slightly lower than the no-pruning line). Thus, pruning trades-off

some accuracy for faster execution.

12500

13000

13500

14000

14500

15000

15500

16000

16500

17000

523 473 423 373 323 273 223 173 123 73

T
o

ta
l
n

u
m

b
e

r
o

f
fl
ip

�f
lo

p
s
 r

e
s
to

re
d

Number of flip�flops remaining in trace set T

no pruning

with pruning

Fig. 10. The effect of the pruning phase in the trace signal selection
algorithm for s15850.

C. Return on additional traced signals

45.2

16.3 9.8

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

700

8 16 32

N
u

m
b

e
r

o
f

re
s
to

re
d

 f
lip

�f
lo

p
s

Trace buffer width

average restored FFs per cycle

average gain of restored FFs per extra traced FF

N
um

be
r

of
 F

F
s

ga
in

ed
 p

er
 e

xt
ra

 tr
ac

ed

Fig. 11. Restored flip-flops vs. trace buffer size for circuit s38417. A
moderately steady rate of increase of the number of restored flip-flops with
increasing trace-buffer size is observed for our proposed solution.

Diminishing gain with additional traced flip-flops was pointed out
as a shortcoming of the greedy algorithms in Section III-C. Our

proposed algorithm alleviates this issue to a large extent. Figure 11
plots the same information as Figure 3, but using our algorithm. It can

600

be noticed that we restore on average more flip-flops than previous
solutions for buffer sizes of 16 and 32. Moreover, far more steady
gain in the number of restored flip-flops per additional traced signal is

observed, compared to Basu & Mishra [10], the best previous solution
so far in terms of total restoration. Similar trends are observed for

other benchmarks as well.

D. Restoration Quality for Biased Selection

We compare the restoration quality with biased selection against

that of the pareto-optimal biased selection described in [13] and using
the same experiment. The circuit is partitioned into a coarse 4x4 grid
and one flip-flop per partition is chosen as a critical flip-flop, leading

to a critical set of 16. The critical flip-flop of a partition is defined as
the flip-flop that, when traced alone, leads to the maximum restoration

for the partition. Two trace buffer widths (16 and 32) are used for the
evaluation. We also use the same quality metric as in [13], namely
the number of flip-flops fully or partially restored in total and from

the critical subset. Table V reports the obtained results. Note that our
technique achieves restoration of more non-critical flip-flops while

restoring the same number of critical flip-flops in almost all cases.
Also there is a sharper increase in the number of restored non-critical
flip-flops compared to [13], when the trace-buffer size is doubled. It

is important to note that this is not a violation of pareto-optimality of
the selection in [13], since pareto-optimality is maintained assuming
perfect linear correlation between the estimation metric and the actual

SRR, an assumption that does not hold, as we have shown.

Circuit
trace Shojaei et al.[13] proposed non-critical
width total critical total critical gain (%)

s5378
16 128 16 125 16 -2.6
32 146 16 156 16 +7.7

s9234
16 64 11 82 11 +33.9
32 89 15 105 15 +21.6

s15850
16 137 16 172 16 +28.9
32 137 16 230 16 +76.8

s38584
16 211 16 254 16 +22.0
32 210 16 361 16 +77.8

s38417
16 210 15 278 16 +34.9
32 312 16 356 16 +17.9

s35932
16 313 16 389 16 +25.5
32 377 16 464 16 +24.1

TABLE V
Results for biased selection indicates restoration of more non-critical flip-
flops and a much sharper increase of restoration when trace width is doubled.

E. Algorithm Execution Performance

Circuit
trace Ko & Liu & Basu & Proposed
width Nicolici [14] Xu [8] Mishra [10] Solution

s5378
8 - 14 - 656
16 - 36 - 634
32 - 75 - 600

s9234
8 - 26 - 456
16 - 75 - 441
32 - 148 - 433

s15850
8 - 298 - 3,877
16 - 764 - 3,823
32 - 1,656 - 3,781

s38584
8 34,440 388 1,200 18,143
16 73,500 802 2,600 18,091
32 149,580 2,826 5,500 18,003

s38417
8 28,200 2,319 2,200 24,943
16 69,060 5,285 4,500 24,819
32 149,940 11,732 9,100 24,734

s35932
8 31,440 1,407 2,200 19,857
16 68,700 5,251 4,400 19,832
32 142,800 10,496 8,900 19,801

TABLE VI
Comparison of execution performance for the algorithms considered. All
execution times are reported in seconds.

Trace signal selection is performed only once during the design

phase of the circuit blocks to be included in the signal list for
the ELA. Hence, the run-time of the selection algorithms is less

important than the quality of the selected signals. However, if an
inordinate amount of time is needed for even moderately sized circuit

blocks, performance would be an issue. In our algorithm, the pruning
phase was designed specifically for this reason. A comparison of the
execution time of previous solutions and our solution is presented

in Table VI. Note that, the execution performance of the proposed
algorithm is often worse for small designs, this is due to the large

number of simulations needed in our algorithm. However, these
simulations are for computation of the estimation metric, and they
are independent of each other during each iteration of the selection

algorithm. A possible way to improve the algorithm’s performance,
if necessary, is to leverage the pattern parallelism of GPU platforms,

where the same execution is applied on different data sets.
Acceleration of the Selection Algorithm: We implemented a

parallel version of the X-simulation kernel on a GPU platform. The

parallel version which performs the |T | independent simulations,
required for every step of the elimination algorithm, concurrently.
We use an NVIDIA GTX 480 GPU as the execution platform. Each

distinct thread-block performs the X-simulation using a different
traced flip-flop set. The main restoration algorithm is also modified
in order to fit single instruction multiple thread execution paradigm

used by GPUs. Execution times corresponding to trace buffer width
of 32 were improved by a factor of 2.69, 3.08 and 3.05 times for

s38584, s38417 and s35932, respectively. This implementation leads
to an overall performance comparable to that of previous solutions,
even in light of a much more accurate estimation metric.

VI. CONCLUSION

In this work, we have presented a trace signal selection algorithm
that strives to maximize state restoration ratio. Our algorithm is

guided by a more accurate simulation based restoration capacity met-
ric and achieves better state restoration ratio than previous solutions.
It also achieves better restoration trends per additional traced signal

while restoring a higher number of states on average.

ACKNOWLEDGMENTS

This work was developed with partial support from the Gigascale
Systems Research Center.

REFERENCES

[1] N. Nataraj, T. Lundquist, and K. Shah, “Fault localization using time
resolved photon emission and STIL waveforms,” in Proc. ITC, 2003, pp.
254 – 263.

[2] B. Vermeulen, T. Waayers, and S. Bakker, “IEEE 1149.1-compliant
access architecture for multiple core debug on digital system chips,”
in Proc. ITC, 2002, pp. 55 – 63.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,”
in Proc. DAC, 2006, pp. 7–12.

[4] SignalTap II Embedded Logic Analyzer, Altera Verification Tool, 2006,
http://www.altera.com/products/software/products/quartus2/verification/
signaltap2/sig-index.html.

[5] ChipScope Pro, Xilinx Verification Tool, 2006, http://www.xilinx.com/
ise/optional prod/cspro.html.

[6] Embedded Trace Macrocells, ARM limited, 2007, http://www.arm.com/
products/solutions/ETM.html.

[7] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in Proc. DATE, 2008, pp. 1298–1303.

[8] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in
post-silicon validation,” in Proc. DATE, 2009, pp. 1338–1343.

[9] S. Prabhakar and M. Hsiao, “Using non-trivial logic implications for
trace buffer-based silicon debug,” in Proc. ATS, 2009, pp. 131–136.

[10] K. Basu and P. Mishra, “Efficient trace signal selection for post silicon
validation and debug,” in Proc. VLSI design, 2011, pp. 352–357.

[11] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibility enhancement
for silicon debug,” in Proc. DAC, 2006, pp. 13–18.

[12] J.-S. Yang and N. A. Touba, “Automated selection of signals to observe
for efficient silicon debug,” in Proc. VTS, 2009, pp. 79–84.

[13] H. Shojaei and A. Davoodi, “Trace signal selection to enhance timing
and logic visibility in post-silicon validation,” in Proc. ICCAD, 2010,
pp. 168–172.

[14] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” IEEE Trans. on
CAD, vol. 28, no. 2, pp. 285–297, 2009.

[15] “Sun Microsystems OpenSPARC,” http://opensparc.net/.

601

