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Abstract—Combinational equivalence checking (CEC) is a main-
stream application in Electronic Design Automation used to determine

the equivalence between two combinational netlists. Tools performing

CEC are widely deployed in the design flow to determine the cor-

rectness of synthesis transformations and optimizations. One of the
main limitations of these tools is their scalability, as industrial scale

designs demand time-consuming computation. In this work we propose

EQUIPE, a novel combinational equivalence checking solution, which
leverages the massive parallelism of modern general purpose graphic

processing units. EQUIPE reduces the need for hard-to-parallelize

engines, such as BDDs and SAT, by taking advantage of algorithms

well-suited to concurrent implementation. We found experimentally that
EQUIPE outperforms commercial CEC tools by an order of magnitude,

on average, and state-of-the-art research CEC solutions by up to a

factor of three, on a wide range of industry-strength designs.

I. INTRODUCTION

Combinational equivalence checking (CEC) is one of the most

popular formal methods in the context of digital circuit design. The

goal of combinational equivalence checking tools is to consider two

distinct versions of the combinational netlist of a design and prove

or disprove that they are functionally equivalent. These tools are

widely adopted in the industry and commonly applied to determine

the correctness of intermediate synthesis transformations and opti-

mizations. Several solutions are available both commercially and as

research tools; however, for most problem instances, their scalability

is still a major limitation.

The technologies available today for CEC can be grouped

into two main families: one paradigm is to produce a canonical

functional representation for the outputs of the two netlists and

then compare the functions obtained (in constant time). In this

context, Binary Decision Diagrams (BDD) [1] is most often the

data structure of choice. This solution is powerful in coping with

netlist pairs that are radically different from each other, however

constructing the BDDs for large circuit netlists can prove challeng-

ing and time consuming. The second family of solutions poses the

problem as a satisfiability problem by constructing a miter circuit

which connects corresponding inputs of the two netlists and feeds

corresponding outputs to XOR gates, which are then ORed together.

If the SAT problem corresponding to the miter circuit is satisfiable,

it can be derived that the two netlists are not equivalent. In most

practical solutions, these two approaches are complemented by a

number of structural and signature-based techniques whose main

purpose is to reduce the complexity and number of SAT or BDD

computations. Structural techniques attempt to prune the netlist

portion to be analyzed by finding corresponding internal nodes

whose fanin logic cone is structurally similar, while signature-based

approaches generate simulation vector signatures of internal nodes

to rule out the potential equivalency of candidate node-pairs.

Most combinational equivalence checking tools execute on gen-

eral purpose processors, leveraging one or a handful of program

threads. The advent of massively parallel graphics processors brings

the opportunity for aggressively parallelizing such a computation-

intensive and widespread application, with the potential to compress

the time to market or further optimize industrial-strength digital de-

signs. Graphics processors are suited to execute not only graphics-

related computation, but also algorithms with a high degree of

parallelism and involving a large amount of localized computation.

To this end, several vendors have recently developed general pur-

pose programming interfaces that enable users to develop software

applications targeting their GP-GPUs (for instance, NVIDIA and

AMD). While parallel solutions for BDD computations and SAT

solvers have experienced only mixed success so far, reaching a

limited amount of speedup over single-threaded execution, other

components in CEC are prone to aggressive parallelization. These

include signature-based analysis and structural techniques, which

constitute a preponderant fraction of the computation, particularly

when the netlists are derived from one another by synthesis trans-

formations, often applied locally. When these latter components

can operate effectively, the need for BDD and SAT engines is

much reduced, thus limiting the fraction of computation spent on

sequential tasks.

A. Contributions

In this work we present EQUIPE, a combinational equivalence

checker accelerated by GP-GPUs’ massive parallelism. EQUIPE

includes distributed solutions for signature-based analysis and for

structural matching. In addition, it relies on a host-based SAT solver

for those situations where equivalence between internal netlist nodes

cannot be established with the former techniques.

EQUIPE operates on the two netlists to be analyzed in a levelized

fashion, determining which pairs of nodes are equivalent at each

logic level, and then using this information in the subsequent levels.

When the equivalence of a pair of nodes cannot be determined

using GPU-based engines, a SAT instance is generated and off-

loaded to the host. The pair of nodes is speculatively assumed to

be equivalent and the computation continues on the GPU while

the host runs the SAT solver. Once the host has generated an

answer, results are updated and propagated as needed. Based on our

experience, the fraction of SAT instances that find a candidate pair

not to be equivalent is extremely small for most benchmarks. This

is particularly true in our case, where the benefits of concurrent

execution allow us to aggressively leverage signature-based and

structural engines, greatly reducing the need for SAT solver calls.

When the SAT solver must be invoked, we find that instances are

usually small, leading to quick completion.

We implemented our solutions on an NVIDIA CUDA GP-GPU

connected to an Intel quad-core host machine and we found that

the performance of EQUIPE is 24 times better on average than that

of a commercial equivalence checking tool running on the same

system, and can reach up to a factor of 3 over a state of the art

research solution running on the same system as well.

II. RELATEDWORK

The problem of combinational equivalence checking (CEC) has

been explored by researchers from the early days of digital design

automation. It is commonly used after synthesis transformation and

optimization to verify that the functionality of the optimized circuit
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is preserved. Traditional combinational equivalence checking lever-

ages BDDs to compare the output functions’ equivalence. Many

early solutions have explored many variations and improvements

over this fundamental idea to achieve extended applicability [2]–[5].

However, BDD-based approaches suffer from exponential memory

usage, hence structural similarity [6], [7] and network cuts through

equivalent nodes [8] have been been complementing mainstream

BDD technology.

An alternative approach to equivalence checking is to construct

a miter circuit, joining the outputs that needs to be verified for

equivalence with an XOR gate [9], and the problem of checking

equivalence is reduced to testing a stuck-at-0 fault at this gate’s

output. This can be posed as a SAT problem by considering CNF

representation for the circuit and determining whether the output

of the XOR gate can be asserted, implying non-equivalence [10].

Recent research in combinational equivalence checking [11], [12]

suggests that using a combination of several formal engines, such

as BDD and SAT, augmented with techniques such as structural

and functional hashing and simulation signatures, may lead to

improved performance for this problem. And-Inverter graphs (AIG)

are also used as circuit representations to support fast analysis.

Indeed, functional reduction of AIG’s can lead to a representation

where each node represents a unique Boolean function. This process

can be performed by simulation via a signature-based functional

classification, followed by the use of a SAT solver to establish

functional equivalence [13]. This functional reduction process can

be used to perform combinational equivalence checking [11] when

applied to the miter built from the two versions of the netlist.

Identifying large structural isomorphic sub-graphs to help establish

equivalence has also been suggested [14].

Only very recently the possibility of using general purpose

graphics processors to solve complex problems in digital design

automation has been explored by researchers. In this domain, [15]

attempts parallel fault simulation, and [16] proposes distributed

logic simulation on GP-GPUs.

III. INTRODUCTION TO CUDA

General purpose computing on graphics processing unit enables

parallel processing on commodity hardware. NVIDIA’s Compute

Unified Device Architecture (CUDA) is a hardware architecture and

complementary software interface to design data parallel programs

executing on the GPU. According to the CUDA model, a GPU is

a co-processor capable of executing many threads in parallel. A

data parallel computation process, known as a kernel, can be off-

loaded to the GPU for execution. The model of execution is known

as single-instruction multiple-thread (SIMT), where thousands of

threads execute the same code operating on different data portions.

Each thread can identify its spatial location by thread ID and thread-

block ID, and thus can access its corresponding data.

The CUDA architecture [17] (Figure 1) consists of several

multiprocessors (14-30 in current generations) contained in a single

GPU chip. Each multiprocessor is comprised of 8 or more stream

processors and can execute up to 1024 concurrent threads, all

running exactly the same code. The block of threads contained in

one multiprocessor has access to 16KB of shared memory, at an

access latency of 1 clock cycle. All multiprocessors have access

to a global memory, which can be 256 MB to 1 GB, known as

device memory, and has higher access latency (300-400 cycles).

It is possible to amortize the cost of accessing global memory

by coalescing accesses from several threads. It is also possible to

transfer data from main memory to device memory, possibly in

large blocks of data since the communication is through DMA.

IV. EQUIPE OVERVIEW

EQUIPE is a distributed CEC solution that leverages the massive

parallelism available in graphic processing units. The solution

operates in three phases, as illustrated in Figure 2. Two netlists to

be compared are provided to the system; typically one is derived by

optimization from the other. In our setup we considered synthesized

combinational netlists expressed in structural verilog, and applied

a number of synthesis optimizations using ABC [18] to obtain the

second version. The two netlists are internally converted to AIG

form by EQUIPE to check their equivalence.

In the first phase, Signature generation, simulation signatures

are generated for each circuit node in both the reference and the

implementation netlist by running a distributed logic simulation

algorithm. In the second phase, Signature analysis, these simulation

signatures are analyzed to identify potential functionally equivalent

nodes between the two netlists through a hashing process, and a

database of candidate equivalent node pairs is populated.

Finally, in the third phase of EQUIPE, each candidate equivalent

node pair is considered to make a full determination of whether the

candidate nodes are actually equivalent of not. During this phase

each node pair is assigned to a distinct thread in the GPU. When

a thread completes its task, it moves on to the next pair. Node

pairs are processed by netlist level, starting from the level closest

to the primary inputs, and a synchronization among all threads is

executed at the completion of each level. This guarantees that when

the next level is processed, all the equivalence information of the

previous level is readily available and completed. The processing

for each node pair consists of performing 2-level matching, that

is, the functional matching of the fan-in cone of the two nodes in

the pair, up to 2 levels deep, leveraging the previously computed

information on the equivalence among the inputs of the 2-level cone

of logic. When 2-level matching is inconclusive, a SAT instance is

generated by the thread and transferred to the host CPU for solving,

while the GPU thread completes its task by speculatively declaring

the nodes equivalent.

In following sections we discuss each of these phases in detail.

A. Signature Generation

EQUIPE considers as input two combinational structural netlists.

Netlists are converted internally to AIGs and corresponding inputs

and outputs are matched by name.

The goal of signature generation is to create signature values for

each internal node of the netlist under study using logic simulation.

Signatures at each node are essentially the simulation vectors

produced at those nodes resulting from a number of simulation
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Fig. 2. EQUIPE algorithm overview. EQUIPE considers two combinational designs represented by And-Inverter graphs and determines if they are
functionally equivalent. Input designs are generated from a synthesized netlist, which is converted to AIG form. The netlist is subsequently optimized and
transformed and these two versions of the design constitute EQUIPE’s inputs. The algorithm starts by generating simulation signatures for all internal
netlist nodes using a distributed logic simulation solution. Then signatures are analyzed to identify potentially equivalent node pairs. These pairs are stored
in the node pairs database. Finally, individual GPU threads operate on one node pair at a time to determine the equivalence of the two nodes. This step is
accomplished by first using 2-level matching, a mixed structural/functional approach, and then, in case of failure, by creating an appropriate SAT instance.
The SAT problems generated in this fashion are solved on the host CPU while work progresses concurrently on the GPU.
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Fig. 3. Signature generation. The And-Inverter graph is levelized and
simulated concurrently in the GPU: each thread simulating one netlist node
at a time. Threads synchronize at the completion of a level, and then proceed
to simulate a node in the next level. Once the process completes, a new set of
inputs is generated randomly, and the netlist is simulated for another cycle.
Signatures are collected by storing the simulation values at the outputs of
each nodes over the entire simulation.

cycles, when primary inputs are fed with random bits every cycle.

Nodes whose signatures are different are bound not to be equivalent.

It is easily noted that longer the signature length, the higher the

chance of distinguishing two different Boolean functions by this

method.

In order to exploit the parallelism available we implemented the

simulator with an architecture resembling that of [16]: the netlist

is levelized and each level is simulated concurrently. Individual

threads simulate one AND gate each of the AIG graph. Figure

3 shows a schematic of this process, highlighting how individual

execution threads move from one gate simulation to the next after

synchronizing at the barrier. As the Figure suggests, it is typical to

observe that at the lower simulation levels the netlist is wider, thus

requiring more threads for simulation while, at levels closer to the

output, fewer threads are needed for simulation. We chose not to

optimize the data organization to compensate for this phenomenon

as [16] suggested: indeed, in our case, the simulation accounts for

only a very small fraction of the equivalence checking effort and

such optimization would have no impact on overall performance.

In order to minimize accesses to the global device memory in

the GPU, generated signature values are stored in shared memory

at first (this occupies one bit per internal node). When shared

storage is exhausted, the data is transferred to global memory in

one single batch. In contrast, the data structure representing the

netlist itself is stored in global memory using an array organized

by level: this organization allows the GPU to optimize access by

executing requests to transfer contiguous blocks of memory from

global memory to a same shared memory unit.

The inputs used for the logic simulation are random vectors,

which could be generated in the GPU as a separate kernel. The

GPU alternates the execution of the input generator kernel with

that of the main simulation kernel – simulating one clock cycle of

the full netlist each time.

In our experimental evaluation we varied the length of the

signature generated to determine a value that would distinguish

most nodes. We found that for all of our designs a value of 32

bits was ideal. In most cases, doubling this length would only

allows us to distinguish a few more nodes in a pool of hundreds of

thousands. While the time to double the signature length is minimal,

the storage space required to storage signatures would double,

leading us to settle for the shorter length. As a case study, consider

one of the circuits used in our evaluation, namely the LDPC

circuit, whose reference netlist has 218,890 AIG nodes. With 32-

bit simulation signatures, 218,530 nodes obtain a unique signature,

while increasing signature length to 64 bits, produces only an

additional 148 unique signatures, a rather minute improvement. This

was the case for other circuits as well.

B. Signature Analysis

Signature analysis considers all the signatures collected and

determines which pair of nodes from the two input netlists are

potentially equivalent. These pairs are added to the node pairs

database, residing in global device memory, for further processing.

The process is executed in a distributed fashion by first adding

nodes to a hash table based on their signature, and then considering

the pool of nodes with a same hash for detailed comparison. We

found that, most often, a same signature is only associated with one

node per netlist. When multiple nodes have the same signature, we

simply consider one from each netlist, and disregard the others. The

selection is made by striving to choose a pair of nodes that belong

to close levels in the two netlists.

C. Checking

At this stage, candidate node pairs can be considered independent

from each other. Individual execution threads in the GPU retrieve

one node pair at a time from the database, evaluate their equiva-

lence, and return the updated information to the database. Pairs are
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this analysis is inconclusive, the thread expands the AIGs and builds a SAT
instance to determine the nodes equivalence. The SAT problems generated
by the threads are off-loaded to the host CPU, while the node pair is deemed
”speculatively equivalent”.

analyzed concurrently on a per-level basis. At the end of each level,

threads are synchronized, and then the operation at the following

level begins. This approach guarantees that the fan-in of any pair

of nodes under consideration has been already checked for node

equivalency.

The operation in each thread during this phase consists of (i)

considering the fanin cone of both nodes in a pair, two levels of

logic deep, and (ii) building the corresponding AIG. These two

small AIGs are compared to determine their equivalence based on

the equivalence of their input nodes and their own structure. Three

outcomes may occur: (i) if the inputs are equivalent and the AIGs

are equivalent, then the two nodes are deemed also equivalent. (ii) If

the inputs are equivalent, and the AIGs are not, then the two nodes

are definitely not equivalent. (iii) Finally, if inputs of the AIGs are

not equivalent, the local information available is not sufficient to

make a final determination. The thread proceeds by expanding the

AIG of the fan-in cone of both nodes, until a cut of equivalent

nodes is found. These AIGs are then enclosed in a miter circuit

and converted to clausal normal form (CNF) for solution by a SAT

solver. The SAT problem is off-loaded to the host CPU, and the

thread deems the pair of nodes to be “speculatively equivalent”,

that is, the pair is assumed to be equivalent in the subsequent

computation, until the host CPU returns with a definitive answer.

Since most of the time the SAT solver finds the nodes to be indeed

equivalent, operating speculatively under this assumption leads to

a minimal amount of re-computation. Node pairs are tagged with

the decision determined by these three outcomes, and the database

is updated upon completion of the checking phase for each thread.

The checking phase consists of two tasks (i) performing 2-level

matching and (ii) constructing a pruned miter if 2-level matching

can not establish or disprove equivalence.

1) 2-level Matching: 2-level matching leverages the structural

information of the 2-level AIGs and the knowledge of functional

equivalence of the AIGs’ inputs, that is, the four grandchildren of

each of the nodes in the node pair. This approach is adapted from

[12], however this process in the EQUIPE framework is far more

powerful as it also takes into consideration nodes that were proven

to be functionally equivalent by SAT and not just functionally
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Fig. 5. Checking procedure. During the checking phase of EQUIPE,
node pairs are assigned to individual threads, which in turn process them
first through 2-level matching and then, in case of failure, through pruned
miter construction. At the completion of this task, the threads update the
corresponding entry in the database indicating if the pair is equivalent, not
equivalent or pending on the SAT solver.

matched nodes. If the grandchildren are pairwise equivalent and

the AIGs are functionally equivalent, then we can declare the node

pair equivalent, too. If only AIGs are equivalent, but not the input

grandchildren, then we can guarantee that the node pair is not

equivalent. If neither of these situations occurs, we need to resort

to a SAT based technique, as shown in Figure 5.

2-level matching is applied to each node pair at each level, even

for AIG nodes that do not have a corresponding netlist node. This

design decision enables us to establish the equivalence of a greater

set of candidate pairs without recurring to the SAT solver. Since 2-

level matching may be executed in a distributed fashion, while the

SAT solver runs on a sequential thread, we derive a performance

advantage from this choice. We also considered extending this

approach using 3 or 4 levels of logic in the AIG. However, we

found that the number of different functions and of different ways

to build those functions impaired the performance of this phase

more than the benefit derived by generating fewer SAT instances

to solve. The method described is illustrated in the top part of

Figure 5, showing the 2-level matching task, and the possible

outcomes of that analysis. The next section discusses the activity

corresponding to the lower part of the figure, when 2-level matching

is inconclusive.

2) Pruned miter construction: When equivalence cannot be

determined by 2-level matching, a thread resorts to setting up a

SAT problem instance to be off-loaded to the host CPU. This phase

proceeds in three steps: first the AIGs are expanded until a cut

of equivalent input nodes can be found, then a miter circuit with

the two AIGs is built, and finally the circuit is converted into a

SAT instance. The fan-in cone of nodes in the pair is expanded,

breadth first, beyond the two levels. For these node pairs, the cone
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of logic below them is explored level by level in a BFS manner:

if two functionally equivalent nodes are found in the two cones,

the logic below those nodes is not further explored and they are

considered primary inputs of the miter circuit to be built. The two

logic cones thus explored are joined to form a miter circuit, to

decide the equivalence of the corresponding candidate pair. The

lower part of Figure 5 (portion in the bubble) illustrates this phase

with an example: assume that node p is in the fan-in cone of x at

the kth level and that q is in the fan-in of y at the same level, and

that < p, q, Y ES > (that is, p and q are equivalent) from previous

analysis. Then the logic below p and q need not be explored further

and the two nodes can be considered as a single joined input for the

SAT solver. The SAT instance problems generated in this phase are

typically fairly simple and thus quick to solve for the sequential SAT

solver. A quantitative analysis of the complexity of the instances

generated is reported in Section VII-B.

Note that it is possible that matched nodes at the inputs of the

miter circuit are not independent of each other. As a result, if the

SAT solver deems the node pair as non equivalent, the pair may still

be equivalent. For these situations, only if the inputs of the miter

circuit are not primary inputs, we construct a new miter circuit that

includes the complete fan-in cone of the node pair and solve a

new SAT instance that will indeed be able to provide a definitive

evaluation of equivalence. In our experimental evaluation with a

number of complex designs we only encountered this situation a

handful of times (a tiny fraction of the overall SAT instances run)

and always with node pairs in the lower netlist levels. As a result full

fan-in SAT instances did not have an adverse effect on performance.

V. OVERLAPPING EXECUTION

Once the SAT instances are generated during the checking phase,

we solve them using a sequential SAT solver in the host CPU.

We made this decision because SAT solver algorithms have proven

challenging to distribute over multiple threads, and state-of-the-art

concurrent SAT solvers do not provide a significant performance

improvement [19], [20]. Moreover, while the host solves the SAT

instances generated, we can use the GPU to compute the checking

phase of the next level of logic in the netlist. However, we have

multiple independent SAT instances after finishing each level, which

can be distributed among multiple general purpose cores, each

running a separate SAT solver process. We report runtimes for a

4-core general purpose processor in section VII-A.

As discussed before, node pairs pending SAT decision are spec-

ulatively deemed equivalent, and the GPU can advance its analysis

to the next level making this assumption for the speculative nodes.

When the SAT solver completes, it can update node pair equivalence

status in the background. Once all the results are in, if any node

pair is determined non equivalent, the analyses dependent on it at

the higher level are re-run and updated.

Figure 6 shows a schematic of this process, where execution on

GPU and CPU is shaded differently. As the figure shows, while

the GPU is processing the checking phase for level k, the CPU is

solving the SAT instances generated at level k−1. Upon completion,

the misspeculated node pairs (frequently none) are updated and the

level k analyses depending on them are re-evaluated.

VI. EXPERIMENTAL SETUP

To evaluate the performance of the combinational equivalence

checking tool, we used a broad range of designs, from purely

combinational circuits, such as an LDPC encoder, to the complex

OpenSPARC core, comprising almost half a million AIG nodes in

its representation. The designs were collected from several sources:

2-level matching
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Fig. 6. Overlapping execution of GPU and CPU during the checking
phase. The GPU performs the checking phase on node pairs at level k, while
the host is solving SAT instances at level k − 1. The host may complete
before or after the GPU, however, they must synchronize before proceeding
to the next level and update potential misspeculations.

the first five designs in Table I were obtained from the OpenCores

section of the IWLS 2005 benchmarks [21], while the next two,

b18 and b19, are the largest synthetic designs from the ITC99

suite. The other designs were obtained from OpenCores [22] and

the Sun OpenSPARC project [23]. Design parameters are reported

in Table I, indicating the number of inputs, output and latches, as

well as the number of AIG nodes and netlist levels found after

AIG levelization. Finally, the last column shows a similarity metric

between the the original and the optimized versions of the design

as explained below.

TABLE I

Testbench designs for evaluation of EQUIPE

Design inputs outputs latches AIG nodes levels similarity

des perf 122 64 1,984 45,449 29 61.2

systemcaes 260 129 670 11,141 79 63.3

usb funct 142 121 1,739 20,532 67 67.1

wb conmax 1,130 1,416 770 55,675 36 61.2

vga lcd 99 109 17,057 120,140 37 55.1

b18 38 151 3,320 94,813 203 61.4

b19 38 302 6,640 196,375 208 63.1

3x3 NoC routers 326 324 13,434 87,618 48 68.1

4x4 NoC routers 578 576 23,875 155,286 54 68.7

5x5 NoC routers 902 900 37,334 467,717 55 69.1

JPEG decompressor 36 91 20,740 130,515 436 56.3

UofT raytracer 544 422 13,986 157,074 165 57.1

LDPC encoder 1,723 2,048 0 218,961 21 58.4

OpenSPARC core 926 938 62,001 385,811 273 72.2

To generate input design pairs for EQUIPE, we synthesized our

testbenches with Synopsys’ Design Compiler targeting the GTECH

library. We constructed a structural Verilog netlist of the circuit from

the synthesized version. This is used as the first input netlist for

EQUIPE. We then apply a number of synthesis transformations and

optimizations using ABC: a synthesis tool chain from the Berkeley

logic synthesis and verification group [18], version 70930. ABC’s

re-synthesis script resyn is used to perform these transformations.

The optimizations in the script include disjoint support decomposi-

tion, refactoring, renoding, sweeping and redundancy removal. The

optimized netlist is used as the second input netlist for EQUIPE.

To provide an estimate of functional similarity between the two

netlists we report in the last column of Table I the percentage of

AIG nodes that were found to be functionally identical between the
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two netlist representations, .

VII. EXPERIMENTAL RESULTS

A. Performance Evaluation

We compared the performance of EQUIPE against a commercial

equivalence checking tool as well as ABC’s internal CEC solution.

The experimental hardware included a CUDA-enabled 8800GT

GPU with 14 multiprocessors and 512MB of device memory,

operating at a clock frequency of 600 MHz for the cores and

900MHz for the memory. The host-based portion of the algorithm

ran on 2.4 GHz Intel Core 2 Quad CPU. The MiniSat 2 SAT

solver [24] was used for deciding the satisfiability of the CNF

corresponding to the miters. The baseline EQUIPE setup uses a

single thread instance of MiniSat running on the CPU to check the

generated SAT instances. In addition, the commercial equivalence

checker and ABC are also executed on the same host.

Table II reports the execution time in seconds for EQUIPE, the

commercial tool and ABC when performing CEC between the

two variants of the designs. The relative performance speedups

for our single-threaded host implementation against the commercial

solution and ABC are also reported. Note that EQUIPE outperforms

the commercial tool by a factor of 4 to 85 times, and shows a

considerable performance benefit (up to 2.5 times) over the state-

of-the-art CEC solution built in ABC. The average speedups are

24.6 times over the commercial solution and 1.8 times over ABC.

In addition, we note that the host-based SAT solver must run

several small SAT instances, thus it could benefit from many threads

running concurrently on the host. We distributed this task over 4

threads running MiniSat on a 4-core CPU. Our task distribution

algorithm estimates the execution time of each SAT instance based

on the number of clauses it includes, and then maps jobs to threads

based on this estimate. Table III reports the speedup achieved when

the host runs 4 concurrent SAT solving threads. As the table reports,

the performance is improved up to 110 times over the baseline

commercial solution, and up to a factor of three over ABC, for

certain benchmarks. Note that this multi-threaded scheme can be

extended to 16 or more threads on CPU, in upcoming generations

of chip multi-processors.

One of the performance bottlenecks, however, remains the fact

that, at each level of the analysis, the index list of the nodes

corresponding to the generated miter structures must be transferred

to the host, so that the corresponding CNF can be constructed.

These lists can be fairly large for large miters, and constitute one

of the limiting factors in the performance boost against ABC,

accounting for at least 30 percent of our execution time. This

problem can be possibly solved by a better indexing scheme, which

can convey the same amount of information in less space. Moreover,

when the CNF instance of a miter is found to be satisfiable, it is

not possible to confirm the non-equivalence unless a larger miter

up to the primary inputs is constructed. This worst case scenario

can be circumvented by computing larger simulation signatures with

more patterns for the nodes in question and thus compensating non-

equivalence issues by leveraging the faster simulation.

B. SAT solver calls

To understand the extent to which the the SAT solver is invoked,

we provide a case study for the LDPC encoder design. Figure 7

shows how many node pairs where analyzed in each logic level and

what fraction of these triggered the generation of a SAT instance.

As it can be noted, the fraction of SAT solver calls is very small

compared to the node pairs resolved by 2-level matching.

TABLE II

Performance of EQUIPE vs. a commercial equivalence checker and

ABC

Design comm. ABC EQUIPE speedup speedup

(seconds) (seconds) (seconds) vs. comm. vs. ABC

des perf 53.1 5.9 3.6 14.75 1.64

systemcaes 21.3 3.1 2.2 9.68 1.80

usb funct 33.7 2.5 1.9 17.74 1.32

wb conmax 29.3 3.3 2.2 13.32 1.50

vga lcd 176.5 8.1 6.1 28.93 1.33

b18 114.5 24.3 10.5 10.90 2.31

b19 197.3 91.0 37.1 5.32 2.45

NoC-3x3 302.1 9.6 6.1 49.52 1.57

NoC-4x4 621.3 21.2 12.1 51.35 1.75

NoC-5x5 2342.8 49.1 27.3 85.82 1.80

DJPEG 543.4 55.1 21.4 25.39 2.57

RayTracer 613.2 56.3 29.5 20.79 1.91

LDPC 980.3 487.8 225.6 4.35 2.16

SPARC 1807.4 401.2 277.1 6.52 1.45

TABLE III

Performance of EQUIPE vs. other solutions using 4 concurrent SAT

solving threads.

Design comm. ABC EQUIPE speedup speedup

(seconds) (seconds) (seconds) vs. comm. vs. ABC

des perf 53.1 5.9 2.7 19.67 2.19

systemcaes 21.3 3.1 1.8 11.83 1.72

usb funct 33.7 2.5 1.5 22.47 1.67

wb conmax 29.3 3.3 1.9 15.42 1.74

vga lcd 176.5 8.1 4.9 36.02 1.65

b18 114.5 24.3 8.2 13.96 2.96

b19 197.3 91.0 28.3 6.97 3.22

NoC-3x3 302.1 9.6 4.9 61.65 1.96

NoC-4x4 621.3 21.2 9.3 66.81 2.28

NoC-5x5 2342.8 49.1 21.2 110.51 2.32

DJPEG 543.4 55.1 17.3 31.41 3.18

RayTracer 613.2 56.3 22.2 27.62 2.54

LDPC 980.3 487.8 177.3 5.53 2.75

SPARC 1807.4 401.2 198.5 9.11 2.02

In addition, we studied the average size of the individual SAT

instances generated. Small SAT instances are often solved much

more quickly than large ones. Figure 8 reports the average number

of clauses in the SAT instances generated for LDPC, again clustered

by logic level. As it can be noted, the average SAT instance in the

lower logic levels includes less than 100 clauses: this constitutes

an extremely small problem for modern SAT solvers. At the higher

levels instances are larger and fewer.

C. Analysis of performance

To identify performance bottlenecks and to estimate the effect of

speculation in the EQUIPE scheme, we recorded the time spent in

each of the three main phases of execution during the equivalence

checking of the LDPC design, using one CPU-core for SAT solving.

For each level of the AIG, functional matching is performed in the

GPU, while the CPU is simultaneously solving SAT instances from

previous level. When both these tasks are completed, bookkeeping

operations necessary depending on the results of the SAT solver

are performed. In Figure 9, we report the times spent in each of

these three tasks for each level. The total time spent per level is

the maximum of the first two columns plus bookkeeping time.

As can be noted from the chart, the overlap of CPU and GPU

execution is mostly balanced in the lower levels while, at higher

levels, the time spent in CPU dwarfs that of functional matching.

This is due to the larger SAT instances generated at higher levels,

which in turn require more computation time. Even though the

number of pairs considered for matching is much higher than

the number of miter instances, matching remains fast because of
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concurrent execution. This situation can be mitigated by distributing

SAT-solving over multiple cores; however the SAT solving time is

generally dominated by a small number of hard instances, whose

computation time cannot be predicted beforehand.

The major contribution to performance improvement in EQUIPE

comes from performing the 2-level matching and miter construction

in parallel in the GPU. To highlight this point we implemented

a version of EQUIPE where these steps are performed in one

CPU thread in sequential fashion while the GPU is not used, and

speculation is absent as well. On the left part of Table IV, we

compare the performance improvement due to performing 2-level

matching and miter construction concurrently. Total time needed

for this non-speculative sequential version is reported in the second

column, while the third column reports time corresponding to

a non-speculative scheme which uses the GPU and the fourth

column reports the relative improvement. The speculative scheme of

EQUIPE is also a source of sizeable performance improvement over

a non-speculative scheme as the time spent in bookkeeping is easily

offset by the successful speculations. In non-speculative mode, the

SAT solving and functional matching would be applied sequentially:

Table IV reports on the right part the performance improvement

w.r.t. the non-speculative scheme. Note that, the benefit from a
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Fig. 9. Computation time spent for each level in the LDPC design,
partitioned into functional matching, SAT solving and bookkeeping. Time
spent in each level is the sum of bookkeeping time plus the maximum of
functional matching and SAT solving.

speculative scheme reduces if the SAT instances generated in each

level require much longer to solve than the time spent in functional

matching, as in the case of LDPC and SPARC designs.

TABLE IV

Performance benefit of using concurrency and speculative equivalence

in EQUIPE

Design sequential parallel parallel

w/o w/o w.

speculation speculation improv speculation improv

(s) (s) (%) (s) (%)

NoC-3x3 16.1 9.3 42.23 6.1 34.40

NoC-4x4 30.3 18.4 39.27 12.1 34.23

NoC-5x5 62.3 37.4 39.96 27.3 27.00

DJPEG 61.2 29.1 52.45 21.4 26.46

RayTracer 67.3 42.1 37.44 29.5 29.92

LDPC 556.7 263.2 52.72 225.6 14.28

SPARC 493.2 327.7 33.56 277.1 15.44

To provide an insight on how EQUIPE compares with ABC the

following analysis of LDPC can be useful. For this benchmark ABC

spends 460s on SAT solving and 18s on the rest of the computation.

In contrast EQUIPE spends only 201s in SAT solving and about

58s in other computation, a portion of which is overlapped with

SAT solving. So even though EQUIPE reduces the SAT solving

time to a large extent, the overall performance is still limited by

the SAT solver.

D. Non-equivalent designs

One of the disadvantages of EQUIPE, as mentioned in Section

IV-C.2, is the fact that when a CNF instance is satisfiable it does not

necessarily imply non-equivalence, due to pruned miter construc-

tion. In order to determine non-equivalence we need to construct a

non-pruned miter up to the primary inputs, which can degrade the

performance of our speculative scheme to a considerable degree.

When designs are indeed equivalent, this does not pose a serious

problem as nodes matched by signature are rarely functionally non-

equivalent. To evaluate how non-equivalence affects the perfor-

mance of EQUIPE we conducted the following experiment: non-

equivalence between two designs is introduced by modifying one

of the input circuit’s AIG. We selected 10 random AIG nodes for

each level of a circuit to perform this study. Results are shown in
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Figure 10 for the LDPC design. As it can be noted, most of the non-

equivalent cases (all but a few at levels 9 and 11) were detected by

a difference of simulation signatures at one of the primary outputs

of the netlist through fast simulation. However, for a few errors in

levels 9 and 11, simulation signatures were not able to detect the

functional non-equivalence: in these cases, we built a large miter to

ascertain non-equivalence of two nodes with matching signatures.

This resulted in a considerable performance degradation as can be

seen on the worst-case run-times for those levels.
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Fig. 10. Impact of non-equivalence on computation time

We performed this study for a few of the larger circuits in the

benchmark set. In Table V we report the worst case execution time

among all generated non-equivalent circuit pairs for one SAT-solver

thread and four SAT-solver threads. Notice that for the NoC circuits

all possible non-equivalent cases were detected by simulation alone,

hence the worst-case time is actually smaller than the time needed

to establish equivalence. However, for the other designs, the non-

equivalent case required the construction of one or more large

miters, which dominated the solution time.

TABLE V

Performance for non-equivalent testbenches using a single thread and

multiple threads for the SAT solver

Design equiv equiv 4-cores non-eqv non-eqv 4-cores

(s) (s) worst case (s) worst case (s)

NoC-3x3 6.1 4.9 4.6 3.9

NoC-4x4 12.1 9.3 6.1 5.2

NoC-5x5 27.3 21.2 8.9 7.1

DJPEG 21.4 17.3 32.2 26.4

RayTracer 29.5 22.2 43.2 38.7

LDPC 225.6 177.3 378.3 356.8

SPARC 277.1 198.5 391.2 345.1

VIII. CONCLUSIONS

We presented a novel distributed equivalence checking algorithm,

called EQUIPE, that leverages the parallelism of modern graphic

processing units to boost the performance of equivalence checking.

EQUIPE includes a novel distributed matching mechanism that uses

structural and functional information to determine if internal node

pairs are equivalent. This is complemented by parallel solutions for

signature generation and analysis. Finally, we developed a specula-

tive mechanism to overlap the execution in the GPU with the SAT

solving tasks off-loaded to the host CPU. We found experimentally

that, on average, EQUIPE delivers a 24 times performance speedup

over a commercial solution, and can further improve this result

when using multi-core hosts for SAT solving. In the future we plan

to leverage more powerful functional units in graphics processing

to integrate the two components of EQUIPE (GPU-based and CPU-

based) in the GPU.
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